# LIQUID-VAPOUR EQUILIBRIUM IN THE BENZENE-n-PROPANOL SYSTEM\*

K.STRUBL, V.SVOBODA, R.HOLUB and J.PICK Department of Physical Chemistry, Institute of Chemical Technology, 166 28 Prague 6

Received February 12th, 1974

Liquid-vapour equilibrium was measured at pressures of  $521\cdot2$ , 340, and  $230\cdot5$  Torr and temperatures of  $65^\circ$ ,  $55^\circ$ ,  $45^\circ$ , and  $35^\circ$ C. All data sets were correlated separately by means of usually used analytic relations. The measured and selected literature data were also correlated together with the values of heats of mixing. For the correlation which would express both the concentration and the temperature dependence, the Renon equation and the modified Palmer–Smith equation were examined and their mutual comparison was carried out.

This work follows up the systematic study of equilibrium behaviour of n-alcohols with hydrocarbons which began by investigating the binary systems of alcohols with cyclohexane<sup>1</sup> and at the present time continues by studying the systems of n-alcohols with benzene of which the benzene-methanol system has been already published<sup>2,3</sup>. A direct continuation is in this work described experimental determination of liquid-vapour equilibrium in the benzene-propanol system considering that the benzene-ethanol system had been sufficiently measured in detail formerly by other athors.

### EXPERIMENTAL

Preparation of pure substances. Benzene, an analytical reagent grade, was shaken with calcinated copper sulphate, then decanted and distilled with sodium on an 150 cm long column filled with stainless steel helices. The measured values of physico-chemical constants ( $d_4^{25} 0.8735$ ;  $n_D^{25} 1.4977$ ; n.b.p.  $80\cdot10^{\circ}$ C; and  $\Delta H_v^{25}\cdot103\cdot48$  cal. g<sup>-1</sup>) are in good agreement with the literature data<sup>4,5</sup>. n-Propanol of the analytical reagent purity was, after adding a small amount of sodium, distilled on a forty-plate bubble-cup column. The found constants ( $d_4^{25} 0.80347$ ;  $n_D^{25} 1.3834$ ; n.b.p.  $97\cdot24^{\circ}$ C; and  $\Delta H_v^{-1} 0.7495$  cal. g<sup>-1</sup>) are as well in good agreement with the published data<sup>5-7</sup>.

Determination of the mixture compositions. The samples of equilibrium mixtures were analyzed by measuring their refractive indices at 25°C. By calibrating the dependence of refractive index on composition, it was found that the data published formerly<sup>8</sup> can be used as well. The attained accuracy in the composition determination of benzene-propanol mixtures was better than  $\pm 0.001$ in mole fraction.

<sup>\*</sup> Part LXXI in the series Liquid-Vapour Equilibrium; Part LXX: This Journal 40, 365 (1975).

Apparatus. The measurement was carried out in the Gillespie equilibrium still as modified by Otsuki and Williams. The still including the temperature and/or pressure measurement and control has been described formerly<sup>9,10</sup>. The temperature was measured with an error of  $\pm 0.01^{\circ}$ C and the error in pressure did not exceed 0.4 Torr.

### RESULTS

### Separate Correlation of Single Sets

The experimental data are presented in Table I. The natural logarithm of activity coefficient of each component was calculated from the equation

$$\ln \gamma_{i} = \ln \frac{y_{i}P}{x_{i}P_{i}^{0}} + \left[ (B_{ii} - v_{i}^{L}) (P - P_{i}^{0}) + P \delta_{ij} y_{j}^{2} \right] / RT, \qquad (1)$$
  
$$\delta_{ij} = 2 B_{ij} - B_{ii} - B_{jj} \quad (j \neq i).$$

The dependence of molar volumes of pure components on temperature was considered in the linear form

$$v^{\rm L} = OA + OB \cdot T \,. \tag{2}$$

The second virial coefficients of pure components as well as the cross virial coefficient were calculated in terms of the O'Connell and Prausnitz method<sup>11</sup>, by using the values of critical constants taken over from the work of Kudchadker and coworkers<sup>12</sup>. All values needed for calculating the activity coefficients including the Antoine vapour pressure equation constants which were also taken from the literature<sup>8,13</sup> are summarized in Table II.

All measured data sets were first correlated separately by the Margules and the van Laar third order<sup>14</sup> equations and by the Wilson<sup>15</sup> and the Renon<sup>16</sup> equations. The ratio of activity coefficients was minimized. To be able to compare the values of constants of the Renon equation along the homologous series of n-alcohols the constant in the Renon equation was chosen equal 0.47 in all cases. The results of these separate correlations are summarized in Table III as the average and standard deviations between the experimental and calculated value of mole fraction in the gas phase. In addition to it, the calculated values of constants of correlation equations are given in Table III, too. Whereas in the Margules and the van Laar equations the constants  $K_1$  and  $K_2$  have their usual meaning<sup>14</sup>, in the Wilson and the Renon ones they express the difference in interaction energies  $(K_i = \lambda_{ij} - \lambda_{ii})$ , or  $K_i = g_{ij} - g_{ij}$  so that they have the dimension of cal. mol<sup>-1</sup>.

## Simultaneous Data Correlation

With the aim to find a generally applicable relation for expressing the concentration and the temperature dependence of excess quantities, the Renon and the Palmer-Smith<sup>17</sup> equations were examined this time. Both relations would take a considerable priority in case of success because of their low number of constants.

The Renon equation was used in the same form as in case of separate correlations:

$$g^{\rm E}/RT = x_1 x_2/RT \left[ \frac{K_1 \exp\left(-\alpha K_1/RT\right)}{x_1 + x_2 \exp\left(-\alpha K_1/RT\right)} + \frac{K_2 \exp\left(-\alpha K_2/RT\right)}{x_1 + x_2 \exp\left(-\alpha K_2/RT\right)} \right].$$
(3)

The Palmer-Smith equation was applied in the form

$$g^{\rm E}/\mathbf{R}T = x_1 x_2 \{ [m_1 M_1 / (x_1 + x_2 M_1)] + [m_2 M_2 / (x_2 + x_1 M_2)] \}.$$
(4)

The constants  $M_1$  and  $M_2$  are given by

$$M_{i} = \exp\left\{\left[\left(\Delta H_{v}\right)_{ij} - \left(\Delta H_{v}\right)_{ii}\right]/RT + m_{i}\right\},\qquad(5)$$

where  $m_i$  are functions of vapour pressures

$$m_{\rm i} = \ln \left( P_{\rm ij}^0 / P_{\rm ii}^0 \right).$$
 (6)

The indices ii in Eqs (4)-(6) denote the property of pure component whereas the index ij denotes the property of a hypothetical solution in which only heterogeneous interactions (*i.e.* the interactions of molecules of different components) may take place. If the dependence of saturated vapour pressure on temperature is known the heat of vaporization can be estimated, *e.g.* by means of the Clausius-Clapeyron equation

$$d \ln P/dT = \Delta H_{\rm v}/RT^2 \,. \tag{7}$$

The data on saturated vapour pressures of pure components are known so that the values of  $(\Delta H_{\nu})_{ii}$  and  $P_{ii}^{0}$  can be calculated in advance and for the correlation there are only the values of heat of vaporization or saturated vapour pressure of hypothetical solution left, which is, of course, possible just for the only temperature. However, as the object of our study in this work is not only the concentration but also the temperature dependence it is necessary to express the temperature dependence of vapour pressure of the hypothetical solution. This can be done *e.g.* by the Calingaert–Davis relation

$$\log P_{12}^0 = K_1 - K_2 / (t + 230), \qquad (8)$$

Collection Czechoslov, Chem. Commun. [Vol. 40] [1975]

### TABLE I

Experimental Data on Vapour-Liquid Equilibrium in the Benzene(1)-n-Propanol(2) System

|                  | <i>y</i> <sub>1</sub> | t, °C          | <i>x</i> <sub>1</sub> | <i>y</i> <sub>1</sub> | t, °C          |
|------------------|-----------------------|----------------|-----------------------|-----------------------|----------------|
|                  |                       | P = 52         | 1·2 Torr              |                       |                |
| 0.0201           | 0.1000                | 85.18          | 0.5478                | 0.7405                | 66.68          |
| 0.0526           | 0.2223                | 82.33          | 0.6082                | 0.7584                | 66-23          |
| 0.0739           | 0.2932                | 80-41          | 0.6890                | 0.7793                | 65.80          |
| 0.1000           | 0.3537                | 78.88          | 0.7599                | 0.8010                | 65.65          |
| 0.1526           | 0.4647                | 75.76          | 0.8293                | 0.8261                | · 65·58        |
| 0.2174           | 0.5633                | 72.51          | 0.8590                | 0.8432                | 65.60          |
| 0.2866           | 0.6210                | 70.52          | 0.9193                | 0.8711                | 65.82          |
| 0.3367           | 0.6523                | 69.23          | 0.9478                | 0.9070                | 66.38          |
| 0•4276           | 0.7008                | 67-80          | 0.9800                | 0.9476                | 67.03          |
| 0.5057           | 0.7274                | 66-99          | 0.9942                | 0.9840                | 67.78          |
|                  |                       | P = 34         | 0·0 Torr              |                       |                |
| 0.0193           | 0.1092                | 74.91          | 0.5386                | 0.7808                | 55-22          |
| 0.0471           | 0.2317                | 72.05          | 0.6072                | 0.7986                | 54.67          |
| 0.0670           | 0.3049                | <b>70</b> ·19  | 0.6837                | 0.8094                | 54·21          |
| 0.0923           | 0.3806                | 68.30          | 0.7354                | 0.8297                | <b>54·0</b> 1  |
| 0.1431           | 0.4964                | 64.93          | 0.8129                | 0.8395                | 53.85          |
| 0.2092           | 0.5976                | 61.40          | 0.8617                | 0.8542                | 53.85          |
| 0.2742           | 0.6637                | 59.13          | 0.9120                | 0.8771                | <b>5</b> 3·97  |
| 0.3341           | 0.6946                | 57.92          | 0.9487                | 0.9016                | 54·29          |
| 0.4183           | 0.7393                | 56.71          | 0.9790                | 0.9458                | 54·90          |
| 0.5012           | 0.7695                | 55.54          | 0.9961                | 0.9840                | 55.50          |
|                  |                       | P=23           | 0·5 Torr              |                       |                |
| D·0162           | 0.1144                | 66.40          | 0.5367                | 0.8081                | 45·51          |
| 0.0425           | 0.2489                | 63.46          | 0.5977                | 0.8112                | 44·98          |
| 0.0628           | 0.3240                | 61.48          | 0.6752                | 0.8244                | 44.60          |
| 0.0867           | 0.4115                | 59.30          | 0.7516                | 0.8375                | 44.32          |
| D·1336           | 0.5212                | 55.83          | 0.8186                | 0.8574                | 44·10          |
| 0.2035           | 0.6280                | 52.18          | 0.8590                | 0.8664                | 44·06          |
| 0 <b>∙2</b> 667  | 0.6938                | 49.73          | 0.9088                | 0.8852                | 44·10          |
| 0.3234           | 0.7257                | 48.34          | 0.9553                | 0.9167                | 44-50          |
| )∙4034<br>)∙4900 | 0·7605<br>0·7841      | 46∙71<br>45∙79 | 0·9790<br>0·9949      | 0·9451<br>0·9840      | 44∙79<br>45∙38 |

| Liquid-Vapour | Equilibrium | in the | Benzene-n | -Propanol | System |
|---------------|-------------|--------|-----------|-----------|--------|
|               |             |        |           |           |        |

## TABLE I

(Continued)

| <i>x</i> <sub>1</sub> | <i>y</i> <sub>1</sub> | P, Torr      | <i>x</i> <sub>1</sub> | <i>y</i> <sub>1</sub> | P, Tor         |
|-----------------------|-----------------------|--------------|-----------------------|-----------------------|----------------|
|                       |                       | <i>t</i> = 1 | 65°C                  |                       |                |
| 0.0067                | 0.0509                | 203.20       | 0.2413                | 0.6127                | 404.40         |
| 0.0147                | 0.1046                | 213.60       | 0.3470                | 0.6736                | 442.80         |
| 0.0162                | 0.1213                | 222.60       | 0.4467                | 0.7111                | 466-20         |
| 0.0324                | 0.1933                | 247.00       | 0.5616                | 0.7525                | 494·00         |
| 0.0477                | 0.2690                | 253.50       | 0.6613                | 0.7718                | 495.80         |
| 0.0658                | 0.3331                | 273.10       | 0.7426                | 0.7912                | 504.00         |
| 0.0878                | 0.3953                | 295.00       | 0.8244                | 0-8226                | 505-90         |
| 0.1385                | 0.4970                | 338.80       | 0.9096                | 0.8655                | 499·70         |
| 0.1965                | 0.5674                | 377.10       | 0.9670                | 0.9280                | 489·60         |
| 0.2028                | 0.5793                | 381.20       | 0.9928                | 0.9771                | 475.40         |
|                       |                       | t = 1        | 55°C                  |                       |                |
| 0.0105                | 0.0880                | 128.40       | 0.2335                | 0.6413                | 268-20         |
| 0.0306                | 0.2169                | 146.70       | 0.3341                | 0.7048                | <b>298</b> .00 |
| 0.0365                | 0.2475                | 151.70       | 0.4380                | 0.7404                | 318-20         |
| 0.0514                | 0.3134                | 163-90       | 0.5501                | 0.7740                | 334.20         |
| 0.0648                | 0.3628                | 174.10       | 0.6535                | 0.8010                | 347.50         |
| 0.0891                | 0.4348                | 192.00       | 0.7443                | 0.8150                | 348.10         |
| 0.1071                | 0.4760                | 204.00       | 0.8253                | 0.8310                | 352.30         |
| 0.1324                | 0.5204                | 216.40       | 0.9104                | 0.8728                | 350.40         |
| 0.1860                | 0.5976                | 247.00       | 0.9680                | 0.9290                | 347.70         |
| 0.1950                | 0.6127                | 252.70       | 0.9921                | 0.9760                | 342.10         |
|                       |                       | t = 4        | 45°C                  |                       |                |
| 0.0089                | 0.0986                | 78.50        | 0.1144                | 0.5424                | 136.00         |
| 0.0169                | 0.1575                | 79.80        | 0.1521                | 0.5976                | 152-20         |
| 0.0247                | 0.2119                | 86.60        | 0.9536                | 0.9164                | 240.20         |
| 0.0429                | 0.3214                | 97.30        | 0.9928                | 0.9790                | 226.50         |
| 0.0657                | 0.4192                | 111.30       |                       |                       |                |
|                       |                       | t =          | 35°C                  |                       |                |
| 0.0081                | 0.1000                | 44·70        | 0.4147                | 0.8027                | 138.60         |
| 0.0201                | 0.2086                | 49.40        | 0.5413                | 0.8300                | 147.50         |
| 0.0402                | 0.3448                | 57.00        | 0.6413                | 0.8470                | 152.30         |
| 0.0585                | 0.4294                | 64-30        | 0.7388                | 0.8605                | 155-10         |
| 0.1057                | 0.5640                | 78.40        | 0.8150                | 0.8673                | 159.50         |
| 0.1112                | 0.5726                | 82.60        | 0.9062                | 0.8920                | 160.10         |
| 0.1589                | 0.6596                | 95.10        | 0.9476                | 0.9139                | 159.10         |
| 0.1661                | 0.6637                | 102.20       | 0.9670                | 0.9340                | 156.70         |
| 0.2134                | 0.7091                | 108.00       | 0.9766                | 0.9484                | 154.80         |
| 0.2980                | 0.7564                | 120.10       | 0.9921                | 0.9773                | 152.00         |

Collection Czechoslov. Chem. Commun. [Vol. 40] [1975]

### 1652

## TABLE II

Values of Pure Substance Parameters

| es of Pure Substance Parameters |                                  |           |        |      |                     | 4                                                        |      |  |
|---------------------------------|----------------------------------|-----------|--------|------|---------------------|----------------------------------------------------------|------|--|
|                                 | Constants of Antoine<br>equation |           |        |      | Cons                |                                                          |      |  |
| Component                       |                                  |           |        | Ref. | 04                  | OB<br>cm <sup>3</sup> .mol <sup>-1</sup> K <sup>-1</sup> | Ref, |  |
|                                 | A                                | В         | С      |      | . mol <sup>-1</sup> | cm <sup>-</sup> .mol <sup>-</sup> K <sup>-</sup>         |      |  |
| Benzene                         | 6.90565                          | 1 211.033 | 220.79 | 13   | 56-23               | 0.1115                                                   | 5    |  |
| n-Propanol                      | 7.83230                          | 1 485.84  | 203.00 | 8    | 50.06               | 0.0840                                                   | 5    |  |

# TABLE III

Separate Correlation of Single Sets of Vapour-Liquid Equilibrium Data

|              | **                    |                        | (y <sup>exp</sup> | $-y^{calc}$ ) |
|--------------|-----------------------|------------------------|-------------------|---------------|
| <br>Equation | <i>K</i> <sub>1</sub> | K <sub>2</sub>         | mean              | standard      |
|              |                       | <i>P</i> = 760 Torr    |                   |               |
| Margules     | 1.3450                | 1.6702                 | 0.016             | 0.017         |
| van Laar     | 1.3308                | 1.7381                 | 0.015             | 0.016         |
| Wilson       | 250.5                 | 1 465.2                | 0.010             | 0.012         |
| Renon        | 451.0                 | 1 048.1                | 0.013             | 0.014         |
|              |                       | $P = 521 \cdot 2$ Torr |                   |               |
| Margules     | 1.0661                | 1.6829                 | 0.007             | 0.009         |
| van Laar     | 1.0842                | 1.7985                 | 0.006             | 0.007         |
| Wilson       | 100.3                 | 1 234.8                | 0.004             | 0.002         |
| Renon        | 260.5                 | 1 032.6                | 0.005             | 0.006         |
|              |                       | P = 340.0 Torr         |                   |               |
| Margules     | 1.0774                | 1.8642                 | 0.007             | 、<br>0·009    |
| van Laar     | 1.1004                | 2.1213                 | 0.002             | 0.006         |
| Wilson       | 53.4                  | 1 551.8                | 0.003             | 0.004         |
| Renon        | 239.5                 | 1 248.9                | 0.004             | 0.004         |
|              | ·                     | P = 230.5 Torr         |                   |               |
| Margules     | 1.1720                | 1.8888                 | 0.009             | 0.010         |
| van Laar     | 1.1808                | 2.1170                 | 0.007             | 0.008         |
| Wilson       | 121.7                 | 1 418.5                | 0.002             | 0.006         |
| Renon        | 293.5                 | 1 170.8                | 0.005             | 0.006         |

## Liquid-Vapour Equilibrium in the Benzene-n-Propanol System

(Continued)

| Component | T <sub>k</sub><br>K | P <sub>k</sub><br>atm | $cm^3$ .<br>. mol <sup>-1</sup> | Ref. | $\omega_{ m H}$ | μ    | η    | Ref. |
|-----------|---------------------|-----------------------|---------------------------------|------|-----------------|------|------|------|
| Benzene   | 562.1               | 48.6                  | 260                             | 12   | 0.215           | 0    | 0    | 22   |
|           | 536.7               | 51.0                  | 218.2                           | 12   | 0.201           | 1.68 | 0.57 | 11   |

## TABLE III

(Continued)

| <b>F</b> |                       | **                         | (y <sup>exp</sup> | - y <sup>calc</sup> ) |
|----------|-----------------------|----------------------------|-------------------|-----------------------|
| Equation | <i>K</i> <sub>1</sub> | <i>K</i> <sub>2</sub>      | mean              | · standard            |
|          |                       | $t = 65^{\circ}\mathrm{C}$ |                   |                       |
| Margules | 1.2116                | 1.7190                     | 0.008             | 0.009                 |
| van Laar | 1.2114                | 1.8414                     | 0.007             | 0.008                 |
| Wilson   | 165.5                 | 1 232.2                    | 0.004             | 0.002                 |
| Renon    | 324.6                 | 1 032.4                    | 0.005             | 0.006                 |
|          |                       | $t = 55^{\circ}\mathrm{C}$ |                   |                       |
| Margules | 1.1935                | 1.7930                     | 0.006             | 0.008                 |
| van Laar | 1.1989                | 1.9736                     | 0.002             | 0.007                 |
| Wilson   | 135.1                 | 1 330.3                    | 0.003             | 0.004                 |
| Renon    | 298.8                 | 1 108.6                    | 0.004             | 0.004                 |
|          |                       | $t = 45^{\circ}C$          |                   |                       |
| Margules | 1.2623                | 1.8713                     | 0.008             | 0.010                 |
| van Laar | 1.2644                | 2.0253                     | 0.007             | 0.008                 |
| Wilson   | 171.5                 | 1 292.8                    | 0.004             | 0.004                 |
| Renon    | 330.6                 | 1 081.9                    | 0.005             | 0.005                 |
|          |                       | $t = 35^{\circ}\mathrm{C}$ |                   |                       |
| Margules | 1.2378                | 1.9587                     | 0.007             | 0.009                 |
| van Laar | 1.2401                | 2.2335                     | 0.005             | 0.007                 |
| Wilson   | 129.0                 | 1 470.0                    | 0.003             | 0.004                 |
| Renon    | 300.1                 | 1 211.2                    | 0.003             | 0.004                 |

Collection Czechoslov, Chem. Commun. [Vol. 40] [1975]

whose advantage consists in keeping only two constants. By applying Eq. (7) to Eq. (8) it is possible to calculate  $(\Delta H_v)_{12}$ , too.

For the simultaneous correlations it is necessary to use a larger number of data sets whose accuracy, unless they originate from one author, may be different. With respect to the aim to use for the intended correlation the sets taken over from the literature as well, the following tests of quality were carried out with all sets:

1) The test of consistency, for isobaric data by Herington<sup>18</sup> and for isothermal ones by Redlich and Kister<sup>19</sup>; 2) The mean deviations of the experimental and calculated values of mole fraction in the gas phase in case of the separate correlation of the set must not exceed 1%; 3) The deviation in  $g^{\rm E}/RT$  computation calculated from the relation

$$\left|\Delta(g^{\mathrm{E}}/RT)\right| \leq \sum_{p} \left|\frac{\partial(g^{\mathrm{E}}/RT)}{\partial p}\right| \left|\Delta p\right|, \qquad (9)$$

where the sum is taken over all experimentally accessible parameters p from which the value of  $g^{\rm E}/RT$  is calculated, should not exceed 0.02 at maximum.

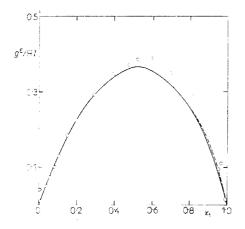
These tests were satisfied by all systems measured by us and from the sets found in the literature still by the isobaric measurement<sup>20</sup> at 760 Torr and the isothermal one<sup>8</sup> at 45°C, by which the set measured by us was completed. The values of heats of mixing as a function of concentration were taken over from the paper of Mrazek and van Ness<sup>21</sup> who measured the heats of mixing at several temperatures with good accuracy.

When correlating, the same weights were used as those presented in one of foregoing papers<sup>1</sup> but as a criterion of mutual comparison of calculation accuracy, the mean

| Set                   | (1)   | (II)    | Set  | (I)  | ( <i>H</i> ) |
|-----------------------|-------|---------|------|------|--------------|
|                       | d     | d       |      | d    | d            |
| <i>K</i> <sub>1</sub> | 438·0 | 7.15625 | T 65 | 3.9  | 4.4          |
| $\hat{K_2}$           | 745-0 | 1 165.0 | T 55 | 4.8  | 3.6          |
| χĨ                    | 0.47  | _       | T 45 | 3.9  | 3.9          |
| P 760                 | 8.7   | 12.9    | T 35 | 7.3  | $7 \cdot 8$  |
| P 521-2               | 3.0   | 2.1     | H 25 | 26.2 | 13.4         |
| P 340                 | 4.1   | 3.0     | H 35 | 31.9 | 13.3         |
| P 230.5               | 4.3   | 4.0     | H 45 | 36.4 | 17·2         |

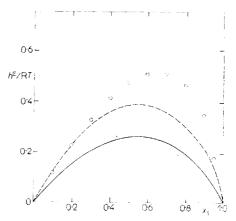
TABLE IV

Simultaneous Correlation of Vapour-Liquid Equilibrium and Heats of Mixing in the Benzene(1)--n-Propanol(2) System by means of the Renon (1) and Palmer-Smith (11) Equations


Collection Czechoslov, Chem. Commun. [Vol. 40] [1975]

### Liquid-Vapour Equilibrium in the Benzene-n-Propanol System

relative deviation related to the maximum value of function in the set considered was used according to relation


$$d = \frac{100}{\sum_{I=1}^{N} w_{I}} \sum_{I=1}^{N} \left[ w_{I} \cdot \frac{F_{I}^{exp} - F_{I}^{calc}}{F_{I}^{max}} \right],$$
(10)

where F is  $g^{E}/RT$  or  $h^{E}/RT$ .



#### FIG. 1

Comparison of Simultaneous Correlation Results on Back Calculating the Dependence of  $g_{\mathbf{p}}^{E}/RT$  on  $x_1$  at 45°C





Comparison of Simultaneous Correlation Results on Back Calculating the Dependence of  $h^{\rm E}/RT$  on  $x_1$  at 45°C

------ Renon equation, ----- Palmer-Smith equation.

The results of simultaneous correlations are given in Table IV. Single sets are denoted by letters (P isobaric equilibrium, T isothermal equilibrium, H heats of mixing) and by a number giving the value of pressure or temperature. In the table the constants of correlating equations are presented as well which were used in back calculations serving to determine the deviations between the experimental and calculated data.

From the results obtained it is evident that the description of the dependence of molar excess free enthalpy on composition is for both equations approximately identical but the description of the dependence of molar excess enthalpy is better on using the Palmer-Smith equation. Similar conclusions can be obtained from Figs 1 and 2, too, in which the concentration dependence of both considered thermo-

<sup>-----</sup> Renon equation, ---- Palmer-Smith equation.

Strubl, Svoboda, Holub, Pick

dynamic equations is demonstrated. It is evident from the figures that the determination of heats of mixing from the Renon equation is substantially worse. This fact is caused probably by a less accurate expressing of the temperature dependence which is better described by the Palmer–Smith equation.

#### LIST OF SYMBOLS

| В                  | second virial coefficient          | Р | pressure                          |
|--------------------|------------------------------------|---|-----------------------------------|
| d                  | deviation defined by Eq. (10)      | R | gas constant                      |
| $g^{\mathrm{E}}$   | molar excess free enhalpy          | Т | absolute temperature              |
| $h^{\rm E}$        | molar excess enthalpy              | v | molar volume                      |
| $\Delta H_{\rm v}$ | heat of vaporization               | w | statistical weight                |
| K                  | constants of correlation equations | x | mole fraction in the liquid phase |
| m                  | constants of Eq. (4)               | У | mole fraction in the gas phase    |
| М                  | constants defined by Eq. $(5)$     | α | constant of Renon equatin         |
| OA, OB             | constants of Eq. (2)               | ⊿ | deviation                         |
| р                  | experimental parameter             |   |                                   |

#### REFERENCES

- 1. Strubl K., Svoboda V., Holub R., Pick J.: This Journal, in press.
- 2. Strubl K., Svoboda V., Holub R.: This Journal 37, 3522 (1972).
- 3. Strubl K., Voňka P., Svoboda V., Holub R.: This Journal 38, 468 (1973).
- 4. Green J. H. S.: Chem. Ind. (London) 1960, 1215.
- 5. Timmermans J.: Physico-Chemical Constants of Pure Organic Compounds. Elsevier, Amsterdam 1950.
- 6. Mathews J. F., McKetta J. J.; J. Phys. Chem. 65, 758 (1961).
- 7. Williamson K. D., Harrison R. H.: J. Chem. Phys. 26, 1409 (1957).
- 8. Brown I., Smith F.: Australian J. Chem. 12. 407 (1959).
- 9. Strubl K., Svoboda V., Holub R., Pick J.: This Journal 35, 3004 (1970).
- 10. Strubl K.: Thesis. Institute of Chemical Technology, Prague 1973.
- 11. O'Connell J. P., Prausnitz J. M.: Ind. Eng. Chem. Proc. Des. Dev. 6, 245 (1967).
- 12. Kudchadker A. P., Alani G. H., Zwolinski B. J.: Chem. Rev. 68, 659 (1968).
- Dreisbach R. R.: Physical Properties of Chemical Compounds. Am. Chem. Soc., Washington 1955.
- 14. Hála E., Pick J., Fried V., Vilím O.: Vapour-Liquid Equilibrium, 2nd Ed., p. 51. Pergamon Press, London 1967.
- 15. Orye R. V., Prausnitz J. M.: Ind. Eng. Chem. 57, 18 (1965).
- 16. Renon H.: Thesis. University of California, Berkeley 1966.
- 17. Palmer D. A., Smith B. D.: Ind. Eng. Chem. Proc. Des. Dev. 11, 114 (1972).
- 18. Herington E. F. G.: J. Inst. Petrol. 37, 457 (1951).
- 19. Redlich O., Kister A. T., Turnquist C. E.: Chem. Eng. Progr. Symp. Ser. 48(2), 49 (1952).
- 20. Udovenko V. V., Mazanko F. F., Plyngey V. Ya.: Zh. Fiz. Khim. 46, 218 (1972).
- 21. Mrazek R. V., van Ness H. C.: A.I.CH.E. J. 7, 190 (1961).

Translated by J. Linek.